Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №17 им. В.Н. Новикова Тырминского сельского поселения Верхнебуреинского муниципального района Хабаровского края

PACCMOTPEHO:

СОГЛАСОВАНО:

УТВЕРЖДЕНО:

на педагогическом совете

Заместитель директора по УМР

Директор МБОУ СОШ № 17

МБОУ СОШ № 17

К.В. Глушак

Е.М. Зарыпова 30.08.2024

Протокол № 1

от 30 августа 2024 г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Химия» (базовый уровень)

для 11 класса общеобразовательный уровень

Зарыпова Евгения Михайловна учитель химии

Тырма, 2024

Срок реализации программы, учебный год: 2024 – 2025

Количество часов по учебному плану: всего 68 часов (34 часа в 10 классе, 34 часа в 11 классе)

Планирование составлено на основе: Программы по химии для 8 – 11 классов общеобразовательных учреждений О.С. Габриелян – М.: Дрофа, 2018 г

Учебник: Габриелян О.С., Химия. 10 класс Базовый уровень: учебник/ О.С. Габриелян . – 8е изд Стереотип – М.: Дрофа, 2020. 191 с

Габриелян О.С., Химия. 11 класс Базовый уровень: учебник/ О.С. Габриелян . – 8е изд Стереотип – М.: Дрофа, 2020

1. Пояснительная записка.

Рабочая программа составлена на основе Государственного стандарта общего образования с учетом требований ФГОС второго поколения, Примерной программы среднего (полного) общего образования по химии (базовый уровень) 2017 г. и авторской Программы курса химии для 8-11 классов общеобразовательных учреждений (базовый уровень) О. С. Габриеляна 2001 г..

Общая характеристика учебного предмета

Среднее общее образование – третья, заключительная ступень общего образования. Содержание среднего (полного) общего образования направлено на решение двух задач:

- 1. Завершение общеобразовательной подготовки в соответствии с Законом об образовании;
- 2. Реализация предпрофессионального общего образования, которое позволяет обеспечить преемственность общего и профессионального образования.

Большой вклад в достижение главных целей среднего (полного) общего образования вносит изучение химии. Которое призвано обеспечить: 1. Формирование системы химических знаний как компонента естественно-научной картины мира;

- 2. развитие личности обучающихся, их интеллектуальное и нравственное совершенствование, формирование у них гуманистических отношений и экологически целесообразного поведения в быту и трудовой деятельности;
- 3. Выработку понимания общественной потребности в развитии химии, а также формирование отношений к химии как возможной области будущей практической деятельности;
- 4. Формирование умения безопасного обращения с веществами, используемыми в повседневной жизни. <u>Целями изучения химии в средней</u> (полной) иколе являются:
 - 1. формирования умения видеть и понимать ценность образования, значимость химического знания для каждого человека независимо от его профессиональной деятельности; умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок с определенной системой ценностей, формулировать и обосновывать собственную позицию;

- 2. формирование целостного представления о мире, представления о роли химии в создании современной естественнонаучной картины мира, умения объяснять объекты и процессы окружающей действительности (природной, социальной, культурной, технической среды), используя для этого химические знания.
- 3. приобретение опыта разнообразной деятельности, опыта познания и самопознания, ключевых навыков, имеющих универсальное значение для разных видов деятельности навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, сотрудничества, безопасного о обращения с веществами в повседневной жизни.

Ведущими идеями предлагаемого курса являются:

- материальное единство веществ природы, их генетическая связь;
- причинно-следственные связи между составом, строением, свойствами и применением веществ;
- познаваемость веществ и закономерностей протекания химических реакций;
- объясняющая и прогнозирующая роль теоретических знаний для фактологического материала химии элементов;
- конкретное химическое соединение представляет собой звено в непрерывной цепи превращений веществ, оно участвует в круговороте химических элементов и в химической эволюции;
- законы природы объективны и познаваемы; знание законов химии дает возможность управлять превращениями веществ, находить экологически безопасные способы производства веществ и материалов и охраны окружающей среды от химического загрязнения;
- наука и практика взаимосвязаны; требования практики движущая сила развития науки, успехи практики обусловлены достижениями науки;
- развитие химической науки и химизация народного хозяйства служат интересам человека и общества в целом, имеют гуманистический характер и призваны способствовать решению глобальных проблем современности.

Изучение химии в старшей школе даёт возможность достичь следующих результатов в направлении личностного развития:

- 1. В ценностно-ориентационной сфере воспитание чувства гордости за российскую химическую науку, гуманизма, целеустремленности;
- 2. В трудовой сфере- готовность к осознанному выбору дальнейшей образовательной траектории;
- 3. В познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметными результатами освоения выпускниками основной школы программы по химии являются:

1. использование умений и навыков различных видов различных видов познавательной деятельности, применение основных методов познания

(системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;

2. использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск анализов;

- 3. Умение генерировать идеи и определять средства, необходимые для их реализации;
- 4. Умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 5. Использование различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

В области предметных результатов ученику предоставляется возможность научиться:

В познавательной сфере:

- Давать определения изученным понятиям;
- Описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии;
- Описывать и различать изученные классы неорганических и органических соединений, химические реакции;

 Классифицировать изученные объекты и явления;
- Наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
- Делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных;
- Интерпретировать химическую информацию, полученную из других источников;

 Структурировать изученный материал;
- Описывать строение атомов элементов 1 и 4 периодов с использованием электронных конфигураций атомов;
- Моделировать строение простейших молекул неорганических и органических веществ, кристаллов; В ценностно-ориентационной сфере
- Анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;

В трудовой сфере

- Проводить химический эксперимент; В сфере физической культуры
- Оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Требования к уровню подготовки обучающихся 10 – 11 класса

В результате изучения химии на базовом уровне ученик должен знать / понимать

- □ важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;
- Посновные законы химии: сохранения массы веществ, постоянства состава, периодический закон;
- основные теории химии: химической связи, электролитической диссоциации, строения органических соединений;

- Важнейшие вещества и материалы: основные металлы и сплавы; серная, соляная, азотная и уксусная кислоты; щелочи, аммиак, минеральные удобрения, метан, этилен, ацетилен, бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, искусственные и синтетические волокна, каучуки, пластмассы; Уметь:
- называть изученные вещества по «тривиальной» или международной номенклатуре;
- *определять*: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических соединений, окислитель и восстановитель, принадлежность веществ к различным классам органических соединений;
- характеризовать: элементы малых периодов по их положению в периодической системе Д.И.Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и химические свойства изученных органических соединений;
- *объяснять*: зависимость свойств веществ от их состава и строения; природу химической связи (ионной, ковалентной, металлической), зависимость скорости химической реакции и положения химического равновесия от различных факторов;
- выполнять химический эксперимент по распознаванию важнейших неорганических и органических веществ;
- проводить самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее представления в различных формах;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- объяснения химических явлений, происходящих в природе, быту и на производстве;
- определения возможности протекания химических превращений в различных условиях и оценки их последствий; □экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;
- приготовления растворов заданной концентрации в быту и на производстве;
- критической оценки достоверности химической информации, поступающей из различных источников информации. <u>Общая характеристика учебного процесса</u>

При обучении учащихся по данной рабочей учебной программе используются следующие общие формы обучения:

- индивидуальная (консультации);
- групповая (учащиеся работают в группах, создаваемых на различных основах: по темпу усвоения при изучении нового материала, по уровню учебных достижений на обобщающих по теме уроках);
- фронтальная (работа учителя сразу со всем классом в едином темпе с общими задачами);
- парная (взаимодействие между двумя учениками с целью осуществления взаимоконтроля).

Данная программа предусматривает установление межпредметных связей с некоторыми предметами, изучаемыми в 10 классе:

Учебный процесс при изучении курса химии в 10- 11 классах построено с учетом следующих методов обучения:

- информационный;
- исследовательский (организация исследовательского лабораторного практикума, самостоятельных работ и т.д.);
- проблемный (постановка проблемных вопросов и создание проблемных ситуаций на уроке);
- использование ИКТ;
- алгоритмизированное обучение (алгоритмы планирования научного исследования и обработки результатов эксперимента, алгоритмы описания химического объекта, алгоритм рассказа о строении и свойствах химического элемента и т.д.);
 - методы развития способностей к самообучению и самообразованию.

Общее количество часов в соответствии с программой: 34 часа в каждом классе Количество часов в неделю по учебному плану: 1 час

Содержание тем учебного курса 10 класса

Тема 1. «Теория строения органических соединений» (2 часа) Межпредметные

связи: неорганическая химия: валентность.

Валентность. Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Основные положения теории химического строения органических соединений. Химические формулы и модели молекул в органической химии.

Демонстрации. Модели молекул гомологов и изомеров органических соединений.

Тема 2. «Углеводороды и их природные источники» (9 часов)

Межпредметные связи: *география*: месторождения природного газа и нефти в мире и Российской Федерации, *физика*: разделение жидкостей методом перегонки.

Природный газ. Природный газ как топливо. Преимущество природного газа перед другими видами топлива. Состав природного газа.

Алканы: гомологический ряд, изомерия и номенклатура алканов. Химические свойства алканов (на примере метана и этана): горение, замещение, разложение и дегидрирование. Применение алканов на основе свойств.

Алкены. Этилен, его получение (дегидрированием этана и дегидратацией этанола). Химические свойства этилена: горение, качественные реакции (обесцвечивание бромной воды и раствора перманганата калия), гидратация, полимеризация. Полиэтилен. Его свойства и применение. Применение этилена на основе его свойств.

Алкадиены и каучуки. Понятие об алкадиенах как углеводородах с двумя двойными связями. Химические свойства бутадиена –1,3 и изопрена: обесцвечивание бромной воды и полимеризация в каучуки. Резина.

16

Алкины. Ацетилен, его получение пиролизом метана и карбидным способом. Химические свойства ацетилена: горение, обесцвечивание бромной воды, присоединение хлороводорода и гидратация. Применение ацетилена на основе свойств. Реакция полимеризации винилхлорида.

Поливинилхлорид и его применение.

Нефть. Состав и переработка нефти. Нефтепродукты. Бензин и понятие об октановом числе.

Бензол. Получение бензола из гексана и ацетилена. Химические свойства бензола: горение, галогенирование, нитрование. Применение бензола на основе его свойств.

Демонстрации. Горение метана, этилена, ацетилена. Отношение метана, этилена, ацетилена и бензола к раствору перманганата калия и бромной воде. Получение этилена реакцией дегидратации этанола и деполимеризации полиэтилена, ацетилена карбидным способом. Разложение каучука при нагревании, испытание продуктов разложения на непредельность. Коллекция образцов нефти и нефтепродуктов.

Лабораторные опыты.

- 1. Изготовление моделей молекул углеводородов.
- 2. Определение элементарного состава органических соединений.
- 3. Обнаружение непредельных соединений в жидких нефтепродуктах.
- 4. Получение и свойства ацетилена.
- 5. Ознакомление с коллекцией «Нефть и продукты её переработки».

Практическая работа №1 «Получение этилена и изучение его свойств.»

Тема 3. «Кислородсодержащие соединения и их нахождение в живой природе» (9 часов)

Межпредметные связи: Биология: углеводы (глюкоза, крахмал, клетчатка), жиры; каменный уголь. Физика: кокс, коксохимическое производство.

Углеводы. Единство химической организации живых организмов. Химический состав живых организмов.

Углеводы, их классификация: моносахариды(глюкоза), дисахариды(сахароза), полисахариды(крахмал и целюллоза). Значение углеводов в живой природе и жизни человека. Понятие о реакциях поликонденсации и гидролиза на примере взаимопревращений: глюкоза ↔ полисахарид.

Глюкоза – вещество с двойственной функцией – альдегидоспирт. Химические свойства глюкозы: окисление в глюконовую кислоту, восстановление в сорбит, брожение (молочнокислое и спиртовое).применение глюкозы на основе её свойств.

Спирты. Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Представление о водородной связи. Химические свойства этанола: горение, взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид. Применение этанола на основении его свойств. Алкоголизм, его последствия и предупреждение.

Понятие о предельных многоатомных спиртах. Глицерин как представитель многоатомных спиртов. Качественная реакция на многоатомные спирты. Применение глицерина на основе свойств.

Каменный уголь. Фенол. Коксохимическое производство и его продукция. Получение фенола коксованием каменного угля. Взаимное влияние атомов в молекуле фенола: взаимодействие с гидроксидом натрия и азотной кислотой. Поликонденсация фенола с формальдегидом в фенолформальдегидную смолу. Применение фенола на основе его свойств.

Альдегиды. Получение альдегидов окислением соответствующих спиртов. Химические свойства альдегидов: окисление в соответствующую кислоту и восстановление в соответствующий спирт. Применение формальдегида и ацетальдегида на основе свойств.

Карбоновые кислоты. Получение карбоновых кислот окислением альдегидов. Химические свойства уксусной кислоты: общие свойства с неорганическими и реакция этерификации. Применение уксусной кислоты на основе свойств. Высшие жирные кислоты на примере пальмитиновой и стеариновой.

Сложные эфиры и жиры. Получение сложных эфиров реакцией этерификации. Сложные эфиры в природе, их значение. Применение сложных эфиров на основе их свойств.

Жиры как сложные эфиры. Химические свойства жиров: гидролиз(омыление) и гидрирование жидких жиров. Применение жиров на основе свойств.

Демонстрации. Окисление спирта в альдегид. Качественная реакция на многоатомные спирты. Коллекция «Каменный уголь и продукты его переработки». Растворимость фенола в воде при обычной температуре и при нагревании. Качественные реакции на фенол. Реакция «серебряного зеркала» альдегилов и глюкозы. Окисление альдегидов и глюкозы в кислоты с помощью гидроксида меди (II). Получение уксусно – этилового и уксусно – изоамилового эфиров. Коллекция эфирных масел. Качественная реакция на крахмал.

Лабораторные опыты:

- 6. Свойства крахмала.
- 7. Свойства глюкозы.
- 8. Свойства этилового спирта.
- 9. Свойства глицерина.
- 10. Свойства формальдегида.
- 11. Свойства уксусной кислоты.
- 12. Свойства жиров. 13. Сравнение свойств растворов мыла и стирального порошка.

Тема 4. «Азотсодержащие соединения и их роль в живой природе» (7 часов)

Межпредметные связи. *Биология:* аминокислоты, пептидная связь, белки, структуры белков, функции белков. Нуклеиновые кислоты РНК и ДНК.Биотехнология и генная инженерия.

Амины. Понятие об аминах. Получение ароматического амина — анилина — из нитробензола. Анилин как органическое соединение. Взаимное влияние атомов в молекуле анилина: ослабление основных свойств и взаимодействие с бромной водой. Применение анилина на основе свойств.

Аминокислоты. Получение аминокислот из карбоновых кислот и гидролизом белков. Химические свойства аминокислот как амфотерных органических соединений: взаимодействие со щелочами, кислотами и друг с другом(реакция поликонденсации). Пептидная связь и полипептиды. Применение аминокислот на основе свойств.

Белки. Получение белков реакцией поликонденсации аминокислот. Первичная, вторичная и третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз и цветные реакции. Биохимические функции белков.

Генетическая связь между классами органических соединений.

Нуклеиновые кислоты. Синтез нуклеиновых кислот в клетках из нуклеотидов. Общий план строения нуклеотида. Сравнение строения и функций РНК и ДНК. Роль нуклеиновых кислот в хранении и передаче наследственной информации. Понятие о биотехнологии и генной инженерии.

Демонстрации.

Взаимодействие аммиака и анилина с соляной кислотой. Реакция анилина с бромной водой. Доказательства наличия функциональных групп в растворах аминокислот. Растворение и осаждение белков. Цветные реакции белков : ксантопротеиновая и биуретовая. Горение птичьего пера и шерстяной нитки. Модель молекулы ДНК. Переходы: этанол \rightarrow этилен \rightarrow этиленгликоль \rightarrow этиленгликолят меди (II). Этанол \rightarrow этаналь \rightarrow этановая кислота.

Лабораторные опыты. Свойства белков. **Практическая работа №2** Решение экспериментальных задач по идентификации органических соединений.

Тема 5. «Биологически активные органические соединения» (3 часа) Межпредметные

связи. Биология: Ферменты, гормоны, витамины, лекарства.

Ферменты. Ферменты как биологические катализаторы белковой природы. Особенности функционирования ферментов. Роль ферментов в жизнедеятельности живых организмов и в народном хозяйстве.

19

Витамины. Понятие о витаминах. Нарушения, связанные с витаминами : авитаминозы, гипо – и гипервитаминозы. Витамин С как представитель водорастворимых витаминов и витамин А как представитель жирорастворимых витаминов.

Гормоны. Понятие о гормонах как гуморальных регуляторах жизнедеятельности живых организмов. Инсулин и адреналин как представители гормонов. Профилактика сахарного диабета.

Лекарства. Лекарственная химия : от ятрохимии до химиотерапии. Аспирин. Антибиотики и дисбактериоз. Наркотические вещества. Наркомания, борьба с ней и профилактика.

Демонстрации. Разложение пероксида водорода каталазой сырого мяса и сырого картофеля. Коллекция СМС, содержащих энзимы. Испытание среды СМС индикаторной бумагой. Иллюстрации с фотографиями животных с различными формами авитаминозов. Коллекция витаминных препаратов. Испытание среды раствора аскорбиновой кислоты индикаторной бумагой. Испытание аптечного препарата инсулина на белок. Домашняя, лабораторная и автомобильная аптечка.

Тема 6. «Искусственные и синтетические органические соединения» (3 часа)

Межпредметные связи. Технология: пластмассы, волокна(натуральные, искусственные, синтетические).

Искусственные полимеры. Получение искусственных полимеров, как продуктов химической модификации природного полимерного сырья. Искусственные волокна(ацетатный шелк, вискоза), их свойства и применение.

Синтетические полимеры. Получение синтетических полимеров реакциями полимеризации и поликонденсации. Структура полимеров: линейная, разветвлённая и пространственная. Представители синтетических пластмасс: полиэтилен низкого и высокого давления, полипропилен и поливинилхлорид. Синтетические волокна: лавсан, нитрон и капрон.

Демонстрации. Коллекция пластмасс и изделий из них. Коллекции искусственных и синтетических волокон и изделий из них. Распознавание волокон по отношению к нагреванию и химическим реактивам.

Лабораторные опыты.

14. Ознакомление с коллекцией пластмасс, волокон и каучуков.

Практическая работа №3. Распознавание пластмасс и волокон.

Содержание курса химии в 11 классе

Тема 1. Периодический закон и строение атома (3ч) *Строение атома.* Атом - сложная частица. Ядро атома: протоны и нейтроны. Изотопы. Электроны. Электронная оболочка. Энергетический уровень. Орбитали: *s* и *p*, *d-орбитали*. Распределение электронов по энергетическим уровням и орбиталям. Электронные конфигурации атомов химических элементов. Валентные возможности атомов химических элементов.

Периодический закон и строение атома. Современное понятие химического элемента. Современная формулировка периодического закона. Причина периодичности в изменении свойств химических элементов. Особенности заполнения энергетических уровней в электронных оболочках атомов переходных элементов. Электронные семейства элементов: *s*- и *p*-элементы; *d*- и *f*-элементы.

Открытие Д. И. Менделеевым Периодического закона. Важнейшие понятия химии: атом, относительная атомная и молекулярная массы. Открытие Д. И. Менделеевым Периодического закона. Периодический закон в формулировке Д. И. Менделеева.

Периодическая система Д. И. Менделеева. Периодическая система Д. И. Менделеева как графическое отображение периодического закона. Различные варианты периодической системы. Периоды и группы. Значение периодического закона и периодической системы. Демонстрации. Различные формы Периодической системы Д. И. Менделеева.

Тема 2. Строение вещества (7ч)

Ковалентная химическая связь. Понятие о ковалентной связи. Общая электронная пара. Кратность ковалентной связи. Электроотрицательность. Ковалентная полярная и ковалентная неполярная химические связи. Обменный и донорно-акцепторный механизмы образования ковалентной связи. Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Ионная химическая связь. Катионы и анионы. Ионная связь и ее свойства. Ионная связь как крайний случай ковалентной полярной связи. *Металлическая химическая связь*. Общие физические свойства металлов. Сплавы.

Водородная химическая связь. Водородная связь как особый случай межмолекулярного взаимодействия. Механизм ее образования и влияние на свойства веществ (на примере воды).

Агрегатные состояния вещества. Газы. Закон Авогадро для газов. Молярный объем газообразных веществ (при н. у.). Жидкости.

Типы кристаллических решеток. Кристаллическая решетка. Ионные, металлические, атомные и молекулярные кристаллические решетки. Аллотропия. Аморфные вещества.

Чистые вещества и смеси. Смеси и химические соединения. Гомогенные и гетерогенные смеси. Массовая и объемная доли компонентов в смеси. Массовая доля примесей. Решение задач на массовую долю примесей.

Дисперсные системы. Понятие дисперсной системы. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем.

Демонстрации. Модель кристаллической решетки хлорида натрия. Образцы минералов с ионной кристаллической решеткой: кальцита, галита. Модели кристаллических решеток «сухого льда» (или йода), алмаза, графита (или кварца). Модель молярного объема газов. Три агрегатных состояния воды.

Лабораторные опыты. 1. Определение свойств некоторых веществ на основе типа кристаллической решетки. 2. Ознакомление с коллекцией полимеров, пластмасс и волокон и изделий из них. 3. Жесткость воды. Устранение жесткости воды. 4. Ознакомление с минеральными водами. 5. Ознакомление с дисперсными системами.

Тема 3. Электролитическая диссоциация (6ч)

Растворы. Растворы как гомогенные системы, состоящие из частиц растворителя, растворенного вещества и продуктов их взаимодействия. Массовая доля растворенного вещества. Типы растворов.

Теория электролитической диссоциации. Электролиты и неэлектролиты. Степень электролитической диссоциации. Сильные и слабые электролиты. Уравнения электролитической диссоциации.

Кислоты в свете теории электролитической диссоциации. Общие свойства неорганических и органических кислот. Условия течения реакций между электролитами до конца.

Основания в свете теории электролитической диссоциации, их классификация и общие свойства.

Соли в свете теории электролитической диссоциации, их классификация и общие свойства. Электрохимический ряд напряжений металлов и его использование для характеристики восстановительных свойств металлов.

Гидролиз. Случаи гидролиза солей. Реакция среды (рН) в растворах гидролизующихся солей.

Демонстрации. Испытание растворов электролитов и неэлектролитов на предмет диссоциации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления раствора. Примеры реакций ионного обмена, идущих с образованием осадка, газа или воды.

Химические свойства кислот: взаимодействие с металлами, основными и амфотерными оксидами, основаниями (щелочами и нерастворимыми в воде), солями. Взаимодействие азотной кислоты с медью.

Лабораторные опыты. 6. Ознакомление с коллекцией кислот. 7. Получение и свойства нерастворимых оснований. 8. Ознакомление с коллекцией оснований. 9. Ознакомление с коллекцией минералов, содержащих соли. 10. Испытание растворов кислот, оснований и солей индикаторами. 11. Различные случаи гидролиза солей. 12. Гидролиз хлоридов и ацетатов щелочных металлов.

Тема 4. Химические реакции. Вещества (15ч +2ч – практич. работы и 1ч повторение)

Классификация химических реакций. Реакции, идущие без изменения состава веществ. Классификация по числу и составу реагирующих веществ и продуктов реакции. Реакции разложения, соединения, замещения и обмена в неорганической химии. Реакции присоединения, отщепления, замещения и изомеризации в органической химии. Реакции полимеризации как частный случай реакций присоединения.

Тепловой эффект химических реакций. Экзо- и эндотермические реакции. Термохимические уравнения. Расчет количества теплоты по термохимическим уравнениям.

Скорость химических реакций. Понятие о скорости химических реакций, аналитическое выражение. Зависимость скорости реакции от концентрации, давления, температуры, природы реагирующих веществ, площади их соприкосновения. Закон действующих масс.

Катализ. Катализаторы. Катализ. Примеры каталитических процессов в промышленности, технике, быту. Ферменты и их отличия от неорганических катализаторов. Применение катализаторов и ферментов.

Химическое равновесие. Обратимые и необратимые реакции. Химическое равновесие и способы его смещения на примере получения аммиака.

Окислительно-восстановительные процессы. Окислительно-восстановительные реакции. Окислитель и восстановитель. Окисление и восстановление. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Общие свойства металлов. Химические свойства металлов как восстановителей. Взаимодействие металлов с неметаллами, водой, кислотами и растворами солей. Металлотермия.

Коррозия металлов как окислительно-восстановительный процесс. Способы защиты металлов от коррозии.

Общие свойства неметаллов. Химические свойства неметаллов как окислителей. Взаимодействие с металлами, водородом и другими неметаллами. Свойства неметаллов как восстановителей. Взаимодействие с простыми и сложными веществами-окислителями. Общая характеристика галогенов.

Электролиз. Общие способы получения металлов и неметаллов. Электролиз растворов и расплавов электролитов на примере хлорида натрия. Электролитическое получение алюминия. Практическое значение электролиза. Гальванопластика и гальваностегия.

Заключение. Перспективы развития химической науки и химического производства. Химия и проблема охраны окружающей среды.

Демонстрации. Экзотермические и эндотермические химические реакции. Тепловые явления при растворении серной кислоты и аммиачной селитры. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. Модель кипящего слоя. Разложение пероксида водорода с помощью неорганических катализаторов (FeCl2, KI) и природных объектов, содержащих каталазу (сырое мясо, картофель). Простейшие окислительно-восстановительные реакции: взаимодействие цинка с соляной кислотой и железа с сульфатом меди (II). Модель электролизера. Модель электролизной ванны для получения алюминия.

Лабораторные опыты. 13. Получение кислорода разложением пероксида водорода с помощью диоксида марганца и каталазы сырого картофеля. 14. Реакция замещения меди железом в растворе сульфата меди (II). 15. Получение водорода взаимодействием кислоты с цинком. 16. Ознакомление с коллекцией металлов. 17. Ознакомление с коллекцией неметаллов.

Практические работы. 1. Получение, собирание и распознавание газов. 2. Решение экспериментальных задач на идентификацию неорганических и органических соединений.

Календарно-тематический план 11 класс (33ч+ 1ч резерв)

№	Дата	Тема урока	Основное содержание,	Характеристика	Контроль	Лабораторные и
			термины и понятия	видов деятельности	_	практические
						работы
			Периодический закон и стро	оение атома3 ч		
1		Строение атома.	Ядро и электронная	Осваивают современные	фронтальный и	
		Электронная оболочка.	оболочка. Электроны,	представления о строении атомов.	индивидуальны	
		Инструктаж по ТБ.	протоны и нейтроны.	Знают о сущности понятия	й	
			Микромир и макромир.	электронная орбиталь, формы		
			Дуализм частиц микромира	орбиталей, взаимосвязь номера уровня		
				и энергии электрона. Составляют		
				электронные формулы атомов		
2		Особенности строения	Основные правила	Представляют сложное строение	фронтальный и	
		электронных оболочек	заполнения электронами	атома, состоящего из ядра и	индивидуальны	
		переходных элементов.	энергетических уровней.	электронной оболочки. Находят	й	
		Орбитали <i>s</i> - и <i>p</i> -	Электронная классификация	взаимосвязи между положением		
			элементов. <i>s-</i> , <i>p-</i> , <i>d-</i> , <i>f-</i>	элемента в Периодической системе Д.		
			семейства	И. Менделеева и строением его атома.		
				Составляют электронные и		
				электронно-графические формулы		
				атомов s -, p -, d - и f -элементов		
3		Периодический закон и	Периодический закон и	Знают смысл и значение	фронтальный и	
		Периодическая система	строение атома. Физический	Периодического закона,	индивидуальны	
		химических элементов	смысл порядкового номера	горизонтальные и вертикальные	й	
		Менделеева	элемента и современное	закономерности и их причины. Дают		
			определение	характеристику элемента на основании		
			Периодического закона.	его положения в Периодической		
			Причины изменения	системе		
			металлических и			
			неметаллических свойств в			
			периодах и в группах.			
			Положение водорода в			
			Периодической системе.			
			Предпосылки открытия,			

	I I	1		I	1
		открытие, первая формулировка			
		Периодического закона.			
		Спор о приоритете открытия			
		Периодического закона			
			вещества7 ч	L	
4	Химическая связь.	Ионная химическая связь.	Знакомятся с классификацией типов	проверочная	
	Ионная и ковалентная	Ковалентная химическая	химической связи и характеристикой	работа	
		связь и ее классификация:	каждого из них		
		полярная и неполярная			
		ковалентная связи.			
		Переход одного вида связи в			
		другой. Разные виды связи в			
		одном веществе			
5	Металлическая и	Металлическая и водородная	Характеризуют свойства вещества по	фронтальный и	
	водородная	химические связи. Единая	типу химической связи	индивидуальны	
	химические связи.	природа химических связей.		й	
	Единая природа	Роль водородной связи в			
	химических связей	формировании структур			
		биополимеров			
6	Вещества	Кристаллические решетки	Осваивают характеристики веществ	фронтальный и	Л. 1.
	молекулярного и	веществ с различными	молекулярного и немолекулярного	индивидуальны	Определение
	немолекулярного	типами химической связи.	строения. Характеризуют свойства	й	свойств
	строения. Типы	Аморфное состояние	вещества по типу кристаллической		некоторых
	кристаллических	вещества	решетки		веществ на
	решеток.				основе типа
					кристаллической
					решетки. 2.
					Ознакомление с
					коллекцией
					полимеров:
					пластмасс и
					волокон и
7	Coorer revisers	Химический состав веществ.	Pyrovovaria a Hayyyyya ay ay ay a a firming	201422772777777	изделий из них
7	Состав веществ.	Причины многообразия	Знакомятся с причинами многообразия веществ. Знакомятся с важнейшими	самостоятельна я работа	
	Причины многообразия	-		я расота	
	веществ	веществ: гомология,	функциональными группами		

		изомерия, аллотропия			
8	Чистые вещества и смеси. Состав смесей. Разделение смесей. Лабораторная работа	Чистые вещества и смеси. Способы разделения смесей: фильтрование, отстаивание, выпаривание, хроматография и др. Разрушение кристаллической решетки.	Осваивают закон Периодической системы, способы разделения смесей. Вычисляют массовую и объемную долю компонента в смеси	фронтальный и индивидуальны й	Л. 3. Жесткость воды. Устранение жесткости воды.4. Ознакомление с минеральными водами
9	Истинные растворы. Способы выражения концентрации растворов	Диффузия Растворимость. Классификация веществ по растворимости. Истинные растворы. Способы выражения концентрации растворов. Массовая доля растворенного вещества. Молярная концентрация вещества в растворе. Гидраты и кристаллогидраты	Знают физическую и химическую теории растворов. Вычисляют массовую долю вещества в растворе	фронтальный и индивидуальны й	
10	Дисперсные системы. Коллоиды (золи и гели).	Определение и классификация дисперсных систем. Истинные и коллоидные растворы. Значение коллоидных систем в жизни человека. Специфические свойства коллоидных систем	Знакомятся с определением и классификацией дисперсных систем, понятиями <i>истинные</i> и коллоидные растворы. Знакомятся с эффектом Тиндаля	фронтальный и индивидуальны й	Л. 5. Ознакомление с дисперсными системами
		Электролитическа			
11	Электролитическая диссоциация. Реакции ионного обмена.	Электролиты и неэлектролиты. Электролитическая диссоциация. Теория электролитической диссоциации (ТЭД). Механизм диссоциации веществ с различным типом связи. Сильные и слабые	Знакомятся с понятиями электролиты и неэлектролиты, примерами сильных и слабых электролитов. Знают о роли воды в химических реакциях. Знают сущность механизма диссоциации. Знают основные положения ТЭД	фронтальный и индивидуальны й	Л. 6. Ознакомление с коллекцией оснований

Г		T	Т	Т	T
		электролиты. Основные положения ТЭД.			
		Качественные реакции на			
		некоторые ионы. Методы			
		определения кислотности			
		среды. Реакции гидратации		ļ	
12	Гидролиз	Понятие гидролиз. Гидролиз	Знакомятся с типами гидролиза солей	фронтальный и	Л. 7. Различные
	неорганических и	органических веществ.	и органических соединений	индивидуальны	случаи гидролиза
	органических	Биологическая роль		й	солей. 8.
	соединений.	гидролиза в организме			Гидролиз
		человека. Реакции гидролиза			хлоридов и
		в промышленности.			ацетатов
		Гидролиз карбидов,			щелочных
		силицидов, фосфидов			металлов
13	Среда водных	Гидролиз солей. Различные	Составляют уравнения гидролиза	самостоятельна	Л. 9. Испытание
	растворов. Водородный	пути протекания гидролиза	солей (1 ступень), определяют	я работа	растворов кислот,
	показатель.	солей в зависимости от их	характер среды	- r	оснований и
	Лабораторная работа	состава. Диссоциация воды.	Autority of the		солей
	oracobate brown to a series	Водородный показатель			индикаторами.
		Водородный полизиты			Электронное
					приложение к
					учебнику
14	Окислительно-	Окислительно-	Знакомятся с понятиями окислитель,	фронтальный и	Л. 10. Реакция
14	восстановительные		· ·		замещения меди
		восстановительные реакции	восстановитель, окисление, восстановление. Знают отличия OBP	индивидуальны й	
	реакции.	(OBP). Окисление и восстановление. Окислители		И	железом в
			от реакций ионного обмена.		растворе
		и восстановители.	Составляют уравнения ОВР методом		сульфата меди
		Составление уравнений ОВР	электронного баланса		(II).
		методом электронного			11. Получение
		баланса. Электролиз			водорода
		растворов и расплавов			взаимодействием
					кислоты с цинком
15	Контрольная работа	Контрольная работа № 1 по	Проводят рефлексию собственных		
	№ 1 по теме:	теме: «Теоретические	достижений в познании строения		
	«Теоретические	основы общей химии»	атома, строения вещества.		
	основы общей химии»		Анализируют результаты контрольной		
			работы и выстраивают пути		

			HOCTHWAILIG WATGAMORO VAODUG	
			достижения желаемого уровня успешности	
		Унминасина возг	тии. Вещества (15ч.)	
16-17	Классификация	Классификация химических	Знают, какие процессы называются	фронтальный и
10-17	<u> </u>	1		
	химических реакций в	реакций: по числу и составу	химическими реакциями, в чем их	индивидуальны
	органической и	реагирующих веществ; по	суть. Устанавливают принадлежность	й
	неорганической химии.	изменению степеней	конкретных реакций к различным	
	Тепловой эффект	окисления элементов,	типам по различным признакам	
	химической реакции	образующих вещества; по	классификации	
		тепловому эффекту; по		
		фазовому составу		
		реагирующих веществ; по		
		участию катализатора; по		
		направлению.		
		Классификация по		
		механизму (радикальные и		
		ионные); по виду энергии,		
		инициирующей реакцию		
		(фотохимические,		
		радиационные,		
		электрохимические и		
		термохимические)		
18	Скорость химической	Скорость гомогенных и	Знакомятся с понятием скорость	фронтальный и
	реакции	гетерогенных реакций.	химической реакции. Знают факторы,	индивидуальны
		Энергия активации. Влияние	влияющие на скорость реакций.	й
		различных факторов на	Знакомятся с понятием о катализаторе	
		скорость химической	и механизме его действия. Знакомятся	
		реакции: природы и	с ферментами-биокатализаторами	
		концентрации реагирующих		
		веществ, площади		
		соприкосновения		
		реагирующих веществ,		
		температуры, катализаторов.		
		Гомогенный и гетерогенный		
		катализ. Сравнение		
		ферментов с		
		неорганическими		

		катализаторами			
19	Обратимость	Обратимые и необратимые	Знакомятся с классификацией	фронтальный и	
	химических реакций.	химические реакции.	химических реакций (обратимые и	индивидуальны	
	Химическое	Химическое равновесие.	необратимые), понятием химическое	й	
	равновесие и способы	Условия смещения	равновесие и условиями его смещения		
	его смещения	химического равновесия.			
		Принцип Ле Шателье. Закон			
		действующих масс для			
		равновесных систем.			
		Константа равновесия			
20	Классификация и	Простые и сложные	Знакомятся с важнейшими классами	проверочная	Л. 12.
	номенклатура	вещества. Оксиды, их	неорганических соединений.	работа	Ознакомление с
	неорганических	классификация; гидроксиды	Определяют принадлежность веществ		коллекцией
	<mark>соединений</mark> .	(основания,	к различным классам неорганических		металлов.
		кислородсодержащие	соединений		13. Ознакомление
		кислоты, амфотерные			с коллекцией
		гидроксиды). Кислоты, их			неметаллов
		классификация; основания,			
		их классификация; соли, их			
		классификация. Понятие о			
		комплексных солях			
21	Металлы и их свойства	Положение металлов в	Знают основные металлы, их общие	фронтальный и	
		ПСХЭ Менделеева.	свойства. Характеризуют свойства	индивидуальны	
		Металлическая связь. Общие	металлов, опираясь на их положение в	й	
		физические свойства	Периодической системе и строение		
		металлов. Химические	атомов		
		свойства металлов.			
		Взаимодействие с простыми			
		и сложными веществами.			
		Оксиды и гидроксиды			
		переходных металлов.			
		Зависимость их свойств от			
		степени окисления металла			
22	<mark>Общие способы</mark>	Основные способы	Понимают суть металлургических	фронтальный и	
	<mark>получения металлов.</mark>	получения металлов.	процессов. Знакомятся с причинами	индивидуальны	
	<mark>Коррозия</mark>	Электролиз. Коррозия:	коррозии, основными типами и	й	
		причины, механизмы	способами защиты от коррозии		

			протекания, способы			
			предотвращения.	1		1
			Предотвращения. Специфические виды	1		1
			коррозии и способы защиты.	1		1
				1		1
			Составление уравнений ОВР	1		1
22	1		электролиза	 		+
23		Неметаллы и их	Положение неметаллов в	Знакомятся с основными неметаллами,	самостоятельна	1
		<mark>свойства. Благородные</mark>	ПСХЭ Менделеева.	их свойствами. Характеризуют	я работа	1
		газы	Конфигурация внешнего	свойства неметаллов, опираясь на их		1 [
			электронного слоя	положение в Периодической системе.		1 [
			неметаллов. Простые	Знакомятся с областями применения		1
			вещества неметаллы:	благородных газов		[
			строение, физические	1		[
			свойства. Химические	1		[
			свойства. Важнейшие	1		[
			оксиды, соответствующие	1		1 [
			им гидроксиды и	1		1 [
			водородные соединения	1		[
			неметаллов. Инертные газы.	1		1
			Изменение кислотных	1		1
			свойств высших оксидов и	1		1
			гидроксидов неметаллов в	1		1
			периодах и группах.	1		1
			Зависимость свойств кислот	1		1
			от неметалла	1		1
24		Общая характеристика	Галогены: фтор, хлор, бром,	Знакомятся с основными свойствами	фронтальный и	
		галогенов	йод. Распространение в	галогенов, областями их	индивидуальны	1
		1 WIOT VITOD	природе, получение,	использования. Знают важнейшие	й	
			свойства. Сравнительная	соединения хлора	"	
			активность. Поваренная	соединения клори	1	1
			соль, соляная кислота	1		
25	+	Оксиды	Строение, номенклатура,	Осваивают состав, строение и	фронтальный и	Электронное
23		Оксиды	классификация и свойства	классификацию оксидов, их	фронтальный и индивидуальны	приложение к
			оксидов. Важнейшие	номенклатуру. Характеризуют их	индивидуальны й	учебнику
				номенклатуру. Характеризуют их свойства	^M	учеонику
			представители этого класса.	своиства	1	1
26	1	Ta	Пероксиды	1	1	TE 4.4
26		<mark>Кислоты</mark> .	Строение, номенклатура,	Осваивают классификацию,	фронтальный и	Л. 14.

		классификация и свойства	номенклатуру кислот. Характеризуют	индивидуальны	Ознакомление с
		кислот. Важнейшие	их свойства	й	коллекцией
		представители этого класса.	na ebenerba	n n	кислот
		Особенности свойств серной			KHCJIOI
		и азотной кислоты,			
		муравьиной и уксусной			
		кислоты			
27	Основания.	Строение, номенклатура,	Осваивают классификацию и	фронтальный и	Л. 15. Получение
21	Ochobalina.	классификация и свойства	номенклатуру оснований.	индивидуальны	и свойства
		оснований. Растворимые и	Характеризуют их свойства	индивидуальны й	нерастворимых
		нерастворимые основания.	Ларактеризуют их своиства	И	оснований
l l		Важнейшие представители			ОСновании
l l		класса. Особенности			
		органических оснований			
28	Соли	Строение, номенклатура,	Осваивают классификацию и	фронтальный и	
20	Соли	классификация и свойства	номенклатуру солей. Характеризуют	фронтальный и индивидуальны	
		солей. Кислые, средние и	их свойства	индивидуальны й	
		основные соли. Важнейшие	их своиства	И	
		представители класса.			
		Комплексные соли,			
ı		*			
29	Генетическая связь	кристаллогидраты Понятие о генетической	Знакомятся с важнейшими свойствами	самостоятельна	
29	между классами			я работа	
	соединений	связи и генетических рядах в неорганической химии.	изученных классов неорганических соединений	я расота	
	соединении	-	Соединении		
		Генетические ряды металла и неметалла. Генетические			
ı		ряды органических соединений. Понятие о			
30	Обобщение и	комплексных соединениях	Dyvavam a ayyanyu tahaaayidayidayidayiyi u	4-211m2 H1 111 H7 11	
30		Систематизация материала	Знают основы классификации и	фронтальный и	
	систематизация знаний	по теме: «Неорганические	номенклатуры неорганических веществ. Знают важнейшие свойства	индивидуальны	
	по теме:	вещества». Отработка	,	й	
	«Неорганические	теоретического материала в	изученных классов соединений.		
	вещества»	рамках данной темы	Составляют уравнения реакций в		
21		YC	ионном виде и ОВР		
31	Контрольная работа	Контрольная работа № 2 по	Проводят рефлексию собственных		
	№ 2 по теме:	теме: «Неорганические	достижений в познании свойств		

	«Неорганические	вещества»	основных классов неорганических		
	вещества»		веществ и химических реакций.		
			Анализируют результаты контрольной		
			работы и выстраивают пути		
			достижения желаемого уровня		
			успешности		
		Итоговое повторение 3 ч			
32	Практическая работа	Правила техники	Знают основные правила ТБ. Знают	фронтальный и	Практическая
	№ 1 «Получение,	безопасности при	основные способы получения,	индивидуальны	работа № 1
	собирание и	выполнении данной работы.	собирания и распознавания газов	й	«Получение,
	распознавание газов»	Способы получения и	(водород, кислород, аммиак,		собирание и
	Инструктаж по ТБ на	собирания газов в	углекислый) в лаборатории. Собирают		распознавание
	рабочем месте.	лаборатории. Распознавание	прибор для получения газов в		газов» (учебник).
		водорода, углекислого газа,	лаборатории		Электронное
		кислорода, аммиака.			приложение
		Деполимеризация полимеров			
33	Практическая работа	Правила техники	Знают основные правила ТБ.	фронтальный и	Практическая
	№ 2 «Распознавание	безопасности при	Осваивают качественные реакции на	индивидуальны	работа № 2
	веществ» Инструктаж	выполнении данной работы.	хлориды, сульфаты, ацетат-ион и ион	й	«Распознавание
	по ТБ на рабочем	Качественные реакции	аммония. Определяют по характерным		веществ»
	месте.		свойствам белки, глюкозу, глицерин		(учебник).
					Электронное
					приложение